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Computer experiments performed on the unequal-mass, two-particle hard point gas 
are discussed and shown to provide evidence for ergodic and mixing behavior when the 
two-particle mass ratio (mz/m,) in cos B = [l - (ma/ml)]/[l + (m&z,)] is such that 8 
is an irrational multiple of 71. Although this system appears to be ergodic and mixing, 
it is certainly not a C-system. 

1. INTRODUCTION 

In view of Sinai’s proof [l] of ergodicity and mixing in the two-dimensional 
hard disc gas and in the three-dimensional hard sphere gas, it is worthwhile to 
inquire if ergodicity and mixing may not also occur in an even simpler one- 
dimensional hard point gas. Now, such is certainly not the case when the hard 
point gas has equal mass particles. This latter system is known to be integrable [2] 
(and hence, not ergodic and mixing) since it possesses analytic constants of the 
motion @ which are in involution [2] of the type 

@* = f PF, 
k=l 

where n = 1, 2,..., N, where N is the number of gas particles, and where P, is the 
momentum of the kth particle. Indeed, a complete analytic solution for this equal 
mass case has recently been provided by Hobson and Cheng [3]. However, the 
question of ergodicity and mixing for a hard point gas having unequal masses 
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remains open. Even the simplest unequal mass case having only two moving 
point particles is not completely decided, as has been recently emphasized by 
Lebowitz, [4] and it is on this simplest case that we focus our attention in this 
paper. In particular, we describe the results of an empirical computer study of 
the motion for two unequal mass points contied to move inside a one-dimensional 
box. 

2. MATHEMATICAL PRELIMINARIES 

We first prove that this two-particle system is certainly not ergodic and mixing 
for every mass ratio. Let the left particle have mass m, and the right particle 
mass mp . After a two-particle collision, the velocities al’ and ZJ,’ of particles one 
and two, respectively, are given by the matrix equation 

u’ = (;;I) = ((1 t s) (l,“))(;:) = Bu, 

where 6 = (m, - mJ/(ml + m2), and v1 and v2 are the particle velocities before 
collision. Equally, a left wall collision by particle one may be written 

0’ = (-:, !p) = Lv, 

while a right wall collision by particle two may be written 

u’ = (:, -;)(;:, = Rv. 

(3) 

(4) 

It is now convenient to introduce a change in the velocity variables given by 
w1 = u, cos(8/2) and wZ = u2 sin(B/2), where 6 = cos 8. In terms of the new 
velocity variables, Eq. (2) may be written 

( 
cos e sin 19 

w’ = sin e - cos e 
w1 

)( ) w2 = cw, (5) 

while Eqs. (3) and (4) become w’ = Lw, and w’ = Rw, since the reflection matrices 
L and R are invariant under this velocity transformation. Moreover, the matrices 
C, L, and R all preserve the quadratic relationship 

KWI’Y + (%‘~21 = (WI” + wz2). (6) 

As a consequence, the sequence of velocity-pairs (wl , w2) that occurs along any 
specified system trajectory must lie on a circle in the (wl, w,)-plane. Thus, this 
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system can retain the possibility of being ergodic and mixing only if the set of 
distinct velocity-pairs (wl , w.J occurring along almost every trajectory is countably 
infinite and densely fills the associated velocity circle. However, as we now show 
when the mass ratio (m,/m,) yields a value of 8 that is a rational multiple of r, 
only a finite number of distinct velocity-pairs (wl , wz> can occur along each 
trajectory, thus, precluding ergodicity and mixing for at least a dense, but countable 
set of mass ratios (nz,/mJ. 

Consider now any finite sequence of velocity-pairs that occurs along an 
arbitrarily chosen trajectory, and let (wl,, , wz,,) be the initial velocity-pair on the 
chosen trajectory. Then, the specified velocity sequence may always be written 
as the matrix product 

CRCL ... RCLR (;+:), 

where successive velocity-pairs are obtained by sequential matrix operations. By 
noting that L = -R and that L2 = R2 = C2 = I, where I is the unit matrix, 
one may always reduce any finite velocity sequence such as sequence (7) to one of 
the forms f(CR)“, -j-(RC)lc, -J-(CR)k R, or &(RC)le R, where k is zero or some 
positive integer. Thus, since (CR) merely rotates the velocity vectory through 
the angle 0, while (RC) merely performs the inverse rotation, the final velocity-pair 
@If 7 wzf) of any finite velocity sequence is obtained from (w10 , wzO) by rotating 
hl9 w2J through the angle &(kfl) or by first reflecting it and then rotating it 
through f(k0). Obviously, then, when 8 is a rational multiple of r, as is the case 
for a denumerable set of mass ratios, only a finite number of distinct velocity-pairs 
can occur [5] along every trajectory. In particular if 13 = (mrr/n), where m and n 
are integers with m < n, there are at most 4n distinct velocity-pairs allowed; 
while if t9 = m?r/n with m and n having no common divisor, there are precisely 4n 
distinct velocity-pairs allowed. 

On the other hand, when 0 is an irrational multiple of rr, as occurs for mass 
ratios forming a dense set of positive measure, the allowed velocity-pairs become 
uniformly dense [5] on the velocity circle. As a consequence, it is at least possible 
for the two-particle hard point gas having “irrational” 0 to be ergodic in velocity 
space. In the next section, we present computer generated evidence that indicates 
that this type ergodic behavior actually occurs, and, in Section IV, we present 
evidence supporting ergodicity over the full phase space (actually over the energy 
hypersurface) for this system in the form of PoincarC surfaces of section [6]. 
These PoincarC surfaces of section are two-dimensional planes chosen to intersect 
the three-dimensional energy “volume.” An ergodic trajectory for this system, 
if it exists, would be expected to intersect a surface of section plane at a set of 
uniformly dense points covering the allowed region of this plane. The computer 
generated evidence indicates that this is indeed the case for irrational 8. Finally, 
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we integrate a set of initially close trajectories for this system and demonstrate 
that the initial phase space points spread in time, rather uniformly covkring the 
allowed phase space region. Thus, the hard point gas is apparently mixing [7] as 
well as ergodic when 8 is irrational. 

In summary, the evidence to be presented here indicates that the unequal-mass, 
hard point gas can, under suitable restrictions, exhibit ergodicity and mixing 
just as do its more sophisticated hard disc and hard sphere cousins. Nonetheless, 
in contrast to these more sophisticated systems, the hard point gas is not a C-system 
[8] because for it, initially close trajectories do not, as we show in the following, 
separate exponentially with time. This lack of C-system behavior probably means 
[9] that the hard point gas will prove of greater interest to mathematicians than 
to physicists. 

3. PRESENTATION OF COMPUTER RESULTS 

For the two-particle, hard point gas, a mass ratio (m&z3 yielding an irrational 
O-value at least allows the possibility for most trajectories to possess countable 
infinite dense sets of distinct velocity-pairs that uniformly cover their associated 
velocity circles. By consequence, a proof for this type of ergodicity is thus reduced 
to showing that the allowed velocity-pairs actually occur. Clearly, the mute 
arithmetic of a computer precludes the calculation of a dense set of velocity-pairs; 
however, a computer can establish whether or not each member of the finite set 
of 4n velocity-pairs allowed by a “rational” O-value (13 = m+z with m and n 
integers having no common divisor) is in fact observed to occur. Thus, a computer 
can provide evidence supporting ergodic behavior for irrational B by demonstrating 
that an increasing number 4n of allowed velocities is actually observed for a 
sequence of rational 0 approaching the irrational &value. 

In our computer experiments, rather than approaching an irrational O-value 
via a sequence of rationals, we chose to investigate (among others) the sequence 
of O-values given by 8 = 2+ for 71 = 5, 7, 11, 15, 17, 23, 25, 33, 41, or 67, and 
the sequence of O-values given by 0 = (n - I)rr/2n for the same n-values. For each 
of these B-values, all 4n of the allowed velocity-pairs were indeed observed to 
occur, thus indicating that irrational O-values would yield ergodic behavior on 
the associated velocity circle. The only surprise in these calculations, to us at least, 
was the rather large total number of collisions (including both wall and particle- 
particle collisions) required to observe all 4n velocity-pairs. Indeed, initially we 
believed that some unsuspected constant of the motion was preventing the occur- 
rence of all 4n velocity-pairs. However, we soon realized that the matrix properties 
C2 = L2 = R2 = Iyield a type of oscillatory behavior in the velocity-pair sequences 
and that, as a consequence, the k in j-(CR)k, for example, increases very slowly. 
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FIG. 1. A plot of the total collision number NC versus the number of allowed velocity-pairs 
4n. NC is the total number of collisions required to observe all 4n allowed velocity-pairs. The 
curve in this figure is highly sensitive to initial conditions. 

An indication of this problem is pictured in Fig. 1, where we graph a curve of 
total collision number NC required to observe all 4n velocity-pairs versus the 
allowed velocity number 4n. The data for Fig. 1 were gathered using the same 
position-velocity initial conditions (xl0 , x2,, , wl,, , wzO) to generate a single system 
trajectory for each o-value in the 8 = 2r/n sequence. The curve shown in Fig. 1 
changes its shape dramatically upon varying the initial state (x1,, , x2,, , w10 , wzO). 
By varying the initial state for fixed 0, we found that the collision number NC 
varies from its minimum of 4n to greater than 500,000, our longest run. Now, 
it is straightforward to show that at least a few periodic trajectories exist (for any 13) 
along which not all allowed velocity-pairs actually occur; clearly, for these trajec- 
tories NC is infinity. The surprise to us was the relative paucity of trajectories 
yielding an NC-value very near the minimum of 4n. Before closing this paragraph, 
it is perhaps worth noting that replacing (wlO, wzO) by (hw,, , hw,,) for X real 
and positive scales all subsequent velocity-pairs by the factor h and changes the 
collision rate, but does not alter the collision sequence; consequently there is, 
in effect, only one energy surface for each &value. 

To provide supporting evidence for ergodicity on the full energy surface, we 
computed a surface of section plot for each rational e-value listed in the preceding 
paragraph. In Fig. 2, we present a typical case, that for 0 = 21~/11. The points 
in Fig. 2 were obtained by numerically integrating a single trajectory and plotting 
the set of position-velocity points (x1 , wl) of particle one for which particle two 
was instantaneously at the right wall (xz = 10) with positive velocity (wp > 0). 
In all our calculations, the left wall lay at x = 0 and the right wall at x = 10. 
For the sake of graphical clarity in Fig. 2, we chose to plot only the upper half 
plane of (x1 , w&points for which w1 > 0 and 10 > xl > 0; the lower half plane 
is, of course, merely the mirror image of the upper. In Fig. 2, we note that the 



102 CASATI AND FORD 

0 
-1% 

.I.1.1.I.I.I.I.I.C.. 

0123456 7 8 9 10 

Xl 

FIG. 2. A surface of section for 8 = 2?r/ll after 14,000 collisions along a single trajectory. 
Only the upper half plane is shown. 

01234567 8 9 10 

FIG. 3. A surface of section for 0 = 27~/27 after about 7000 collisions along a single tra- 
jectory. 

FIG. 4. A surface of section for 0 = 2~127 after about 32,000 collisions along the same 
trajectory as used for Fig. 3. A trend toward uniformity is apparent. 
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observed points rather uniformly cover the 11 velocity lines allowed by B = 27r/ll, 
w1 > 0, and w2 > 0. Approximately 14,000 collisions (wall plus particle-particle) 
were required to obtain this rather uniform distribution; however, again for clarity, 
not all the computed (x1 , w,)-points were graphed. 

In Fig. 3, we graph a surface of section for 0 = 2~/27 obtained by integrating 
a single trajectory for only about 7000 collisions while Fig. 4 shows the same 
surface of section obtained by integrating the given trajectory for 32,000 collisions. 
Even after 32,000 collisions, the distribution of (x1 , w&points is not completely 
uniform over the 27 allowed velocity lines, although a comparison of Figs. 3 and 4 
indicates that uniformity is being approached. Figures 2-4 are typical of the 
results obtained for all the rational &values studied; these results support the 
view that irrational B-values yield ergodic behavior over the full energy surface. 

Figure 5 presents a full surface of section (w, >( 0) showing the mixing behavior 
observed for a 8 = 2?r/ll system. Initially, 110 points in the (x1 , w&plane were 
selected as initial points for generating 110 trajectories. These initial (x1 , wJ- 
points were spaced uniformly between x1 = 5 and x1 = 9 on the uppermost 
velocity line for which w1 = 1.353. In Fig. 5, we show the locations of these 
110 points after about 70,000 collisions along each trajectory; the initial points 
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FIG. 5. A full surface of section for 0 = 2411 showing mixing behavior for a set of 110 
initially close trajectories. Each trajectory was initiated with the same (wl, wa) velocity-pair. 
In this figure, only the distribution of the 110 points at the end of about 70,000 collisions for 
each trajectory is shown. 
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have scattered over all 22 allowed velocity lines. Were the mixing perfectly uniform, 
Fig. 5 would show five points evenly spread over each velocity line. This is not 
the case in Fig. 5, primarily because of expected statistical fluctuations from 
perfect uniformity; however, in addition here, about 10 of the 110 final points 
are unseparated in horizontal position, at least to the graphical accuracy used. 
This occurs because all 110 initial points for Fig. 5 had the same velocity w, (and, 
therefore, the same wg also). In this situation, the associated trajectories do not 
initially separate with time. Indeed, the points approximately maintain their 
initial closely spaced con6guration until the velocity sequences along the various 
trajectories become different; in Fig. 5, even after 70,000 collisions, about 10 of 
the initial points have very nearly maintained their initial separation from a 
closest neighbor. Nonetheless, Fig. 5 indicates that mixing does slowly occur 
on the specified, two-dimensional invariant integral surface. To illustrate the 
more rapid mixing, which occurs when the initial velocities are not all equal, 
Fig. 6 presents a full surface of section for 0 = 27r/ll using 400 initial points 
uniformly spread over an initial rectangle in the surface of section plane. The 
positions of these points initially lay between x1 = 5 and x1 = 6, while the velocities 
w1 of the points lay between w1 = 1.25 and w1 = 1.35. Figure 6 shows the distribu- 
tion of these points after about 12,000 collisions. One notes here, as expected, 
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FIG. 6. A full surface of section for 0 = 2n/ll showing the mixing behavior when not all 
initially close trajectories have the same initial (w, , wa) velocity-pair. The distribution of points 
at the end of about 12,000 collisions (for each trajectory) is shown for a set of 400 trajectories. 
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that a somewhat uniform distribution has been achieved much quicker than for 
Fig. 5. Only about 300 points appear in Fig. 6 with the remaining 100 points being 
unresolved from some close neighbor. Initially, 20 points were uniformly distributed 
along 20 velocity lines in the initial rectangle; the 100 unresolved points are all 
close to some neighbor having the same initial velocity. Figure 6 is a computer 
generated typewriter plot; a more precise plot might move each point slightly, 
but would not alter the figure significantly. As a further test of mixing, we inte- 
grated 36 trajectories (using 0 = 27~/27) that were initially very close together 
on the energy surface, and then we plotted the positions of the time evolved points 
in (x, , x,)-space and separately, on the velocity circle. Figures 7 and 8 show the 
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FIG. 7. A graph of the position points (x1, x.J for 36 initially close trajectories after 60 
collisions. Here 0 = 2d27. 
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FIG. 8. A graph of the velocity points (wI , wz) for 36 initially close trajectories after 60 
collisions. Here 8 = 2~/27. 
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distribution of the 36 points after about 60 collisions while Figs. 9 and 10 show a 
somewhat uniform distribution after about 60,000 collisions. In Figs. 7 and 9, 
the 36 points always lie above the line x1 = x2 since the hard points cannot pass 
through each other. In Figs. 8 and 10, since here, 0 = 2~r/27 for 36 distinct initial 
velocity-pairs, there are 4 x 27 x 36 = 3888 distinct, allowed final velocity-pairs. 
Figures 5-10, which are typical of many such calculations we have made, certainly 
make it highly plausible that the hard point gas is mixing as well as ergodic when 8 
is an irrational multiple of T. 

x2 

FIG. 9. A graph of the 36 position points (x1 , x2) shown in Fig. 7 after about 60,000 collisions. 
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FIG. 10. Agraph of the 36 velocity points (wI , WJ shown in Fig. 8 after about 60,000 collisions. 
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Finally, in Fig. 11, we show computer verification of a linear, rather than an 
exponential, growth of separation distance between the members of an initially 
close trajectory-pair. The two trajectories were initiated at the same positions 
(x,‘, x,‘) = (x1 , x2), but at distinct velocities (wl’, w,‘) # (w2 , wz). Thus, D, , 
the distance between the two trajectories in position space is initially zero; D, , 
the distance between the trajectories in velocity space, was initially chosen to be 
1O-6 velocity units. Now, since the matrices L, R, and C each leave the quadratic 
form (dw12 + dwz2) invariant, where dw, and dw, are differentials of wi and wz , 

oJL-GII1IIIN,l t 
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FIG. 11. A plot of Da(t), the position space distance between an initially close trajectory- 
pair, versus time (in arbitrary units). Here one notes, as expected, that &(t) shows a short-term 
linear growth with time. 

D, does not change with time as long as the velocity sequence along each trajectory 
is the same, except for brief spikes away from lo-“, quickly followed by a return, 
during the time interval when one trajectory has undergone m collisions while 
the other has undergone only (m - 1). Because D,(t) thus is essentially a constant 
for a considerable period, the growth in distance between trajectories is due 
almost solely to the growth of D,(t). As a consequence, in Fig. 11, we chose to 
graph D,(t) versus time. In this figure, as long as the collision sequence is the 
same for both trajectories, one expects D,(t) M at, where 01 is some constant, since 
D,(t) = 10-6. Indeed, this is precisely what is observed in Fig. 11 from t z 0 
to t s 5,000 (approximately 600 collisions). At t G 5000, the spikes in the velocity 
distance D,(t) become broad enough to cause the increasing oscillation in D,(t) 
seen from t g 5000 to t s 19,000 (approximately 2200 collisions). Nonetheless, 
the average growth in D,(t) remains linear. At t E 19,000, however, there is a 
large jump in D,(t) (with no return) and consequently a very rapid rise in D,(t). 
We have verified that this behavior at t = 19,000 occurs because the collision 
sequences along the two trajectories I?rst become different at that instant. 

581/20/r-8 
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4. DISCUSSION OF RESULTS 

In this paper, we have presented various types of computer evidence indicating 
that the two-particle hard point gas is, under suitable circumstances, ergodic and 
mixing. However, we have seen that this system is ergodic and mixing or not as 0 
is an irrational multiple of z= or not. Thus, one naturally asks how a computer 
can decide such a delicate issue using only the arithmetic of finite rational numbers. 
Here, we have attempted to circumvent this problem by investigating sequences of 
rational 0 that indicate the results to be expected for irrational 0. 

For rational 8, we know quite rigorously that only a finite number of velocity- 
pairs are allowed to occur. For the calculations resulting in Fig. 1, we thus need 
only be accurate enough to ensure that none of the rigorously allowed velocity- 
pairs that were observed in the integration process appeared due to computational 
error. For the more detailed calculations of Figs. 2-6, we need only sufficient 
accuracy to ensure that the relatively uniform covering of the allowed velocity 
lines is not due to computational error. To ensure that our computations were 
indeed accurate enough to meet these requirements, we reversed particle velocities 
at the end of several long trajectory integrations (about 500,000 collisions) and, 
in each case, regained the initial state to at least six- or seven-digit accuracy. In 
addition, Fig. 11 shows that an initial trajectory “error” of 1O-6 grows linearly 
to approximately 1O-2 during about lo3 collisions. All our calculations were 
performed on a UNIVAC 1108 using 16-digit double precision arithmetic. Thus, 
if one grossly overestimates our initial error at lo- 14, the final error in a trajectory 
integration involving 500,000 collisions would be no more than about lo-‘. 
Finally, then, in regard to the distinction between rational and irrational 0, a 
noticeable difference (greater than lo-‘, say) between the trajectories of extremely 
close (less than 10-14, say) rational and irrational e-values would appear only 
after 500,000 collisions. It is thus quite clear that Figs. l-11, which use at most 
three-digit accuracy and involve at most 100,000 collisions, would be strictly 
unchanged had we performed our integrations using infinite mathematical precision 
for irrational e-values differing infinitesimally from the rational values quoted in 
these figures. 

Nonetheless, even though accurate in themselves, the computer results presented 
here certainly do not constitute a mathematical proof of ergodicity and mixing. 
Our results provide, at best, strong evidence in support of these properties and, 
pending the discovery of a rigorous proof, the creditability of our evidence must 
be determined by each reader. Should this system indeed prove to be mixing, it is 
quite interesting to note that this mixing results from a linear rather than an 
exponential separation of initially close trajectory-pairs. Moreover, for this system, 
mixing would arise from two sources. First, there is the short-term linear separation 
of trajectories shown in Fig. 11, and second, there is a long-term “linear” separa- 
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tion of trajectories due to differing collision sequences for initially close trajectories. 
Indeed, in Fig. 5, where all initial velocities are the same, there is no short-term 
linear separation and mixing results solely from differing collision sequences. 
This system is thus mathematically quite interesting; however, since exponential 
separation (C-system behavior) is expected [9] for physically realistic systems, 
the hard point gas would not appear to possess as much appeal to physicists as 
to mathematicians. 

As a concluding note, let us mention that for most initial conditions, the time 
averaged, single particle kinetic energies approached equipartition of energy 
independent of mass ratio. In particular, equipartition was observed even for the 
integrable, equal-mass, hard point gas. Thus, equipartition of energy is not always, 
as has been supposed in the past, an adequate test for ergodic or mixing behavior. 
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